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Abstract. The Sollitt-and-Cross model of water-wave motion in a porous structure involves a free-surface con-
dition which contains a complex parameter. This leads to two particular difficulties when this model is used in
conjunction with eigenfunction expansion techniques. First of all the roots of the dispersion relation are themselves
complex and therefore difficult to locate by standard numerical methods. Secondly, the vertical eigenfunction
problem is not self-adjoint and standard expansion theorems do not apply. In this paper it is shown how these two
difficulties may be resolved with the aid of the theories of, respectively, complex variables and non-self-adjoint
differential operators. In particular, a method is described that allows the explicit calculation of the roots of the
dispersion relation, and the appropriate expansion theorem is given.
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1. Introduction

A number of authors have investigated the interaction of water waves with porous structures,
such as rubble-mound breakwaters, using the linearised theory of Sollitt and Cross [1]. A
fundamental aspect of the model is that, within a surface-piercing structure, the free-surface
condition has the same form as that for the standard linearised water-wave problem, but
the frequency parameter is complex rather than real. There are two main approaches to the
application of this theory to practical problems, namely boundary-element methods [e.g.2]
and eigenfunction expansion methods [e.g.3]. The latter method is the subject of the present
paper.

In the eigenfunction approach the complex parameter in the free-surface conditon leads to
two particular difficulties. Firstly, the roots of the dispersion relation are themselves complex
and are therefore more difficult to locate than in the standard water-wave problem where they
are either purely real or purely imaginary. Here results are given that enable the straightfor-
ward evaluation of these roots of the dispersion relation. The second difficulty is that the
problem for the vertical eigenfunctions is no longer self-adjoint and the standard expansion
theorems that appear in most text books do not apply. Here the problem is set into the con-
text of the general theory of non-self-adjoint ordinary differential operators and the relevant
expansion theorem is given.

Some relevant aspects of the linearised water-wave problem for time-harmonic motion of
angular frequencyω in a region of constant depthh are now summarised. Cartesian coordi-
nates(x, y, z) are chosen so that the vertical coordinatey has its origin in the free surface and
is directed upwards. In the Sollitt-and-Cross model, the equation of motion includes resistance
forces, which are quadratic in the velocity, and the added resistance due to the added mass
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320 P. McIver

of the individual grains within the medium. Under the assumption of time-periodic motion,
this nonlinear equation may be linearised by an application of the principle of equivalent
work. After the introduction of a velocity potential8(x, y, z, t), which by mass conservation
satisfies Laplace’s equation, the equation of motion may be integrated to obtain a Bernoulli
equation

s
∂8

∂t
+ p

ρW
+ gy + νω8 = 0. (1)

Here t is time,p is the pore pressure,ρW is the fluid density,g is the acceleration due to
gravity,ν is a dimensionless friction coefficient and the inertia coefficient

s = 1+ 1− ε
ε

CM, (2)

whereε is the porosity of the medium andCM is the added mass of the grains. On the fluid
free surface within the porous medium, the Bernoulli equation (1) may be combined with the
kinematic condition that water particles in the surface move with the surface, to obtain

s
∂28

∂t2
+ g ∂8

∂y
+ νω∂8

∂t
= 0 on y = 0. (3)

Further details of the model may be found elsewhere [1, 3].
If separable solutions are sought in the form8(x, y, z, t) = Re{φ(x, z)χ(y)e−iωt }, then

it is found that the Laplace equation yields

T χ ≡ −d2χ

dy2
= λχ for − h < y < 0, (4)

whereλ is the separation constant, while the free surface condition (3) reduces to

dχ

dy
= Kχ on y = 0, (5)

whereK = ω2(s+ iν)/g. In addition,χ is required to satisfy the condition of no flow through
the bed which is

dχ

dy
= 0 on y = −h. (6)

When the friction coefficientν = 0 and the porosityε = 1, the above problem forχ reduces
to that which arises in the standard water-wave problem when a series solution in terms of
vertical eigenfunctions is sought by the method of separation of variables [4, Section 7.4].

First of all, the solution of (4–6) is considered for the standard water-wave problem in
whichK is the real numberω2/g. The solutions of the problem are of the form

χ = cosk(y + h), (7)

wherek = λ1/2 is a root of the dispersion relation

f (kh) ≡ Kh+ kh tankh = 0. (8)
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The dispersion relation and eigenfunction expansions for water waves321

For any specified value of the frequency parameterK, this dispersion relation has two purely
imaginary rootsk = ±k0 and an infinity of purely real roots{k = ±km;m = 1,2, . . .}. The
set of vertical eigenfunctions

χm = coskm(y + h)
Nm

, m = 0,1,2, . . . , (9)

with

N2
m =

1

2

(
1+ sin 2kmh

2kmh

)
, (10)

form a complete orthonormal set satisfying

1

h

∫ 0

−h
χm(y)χn(y)dy = δmn, (11)

whereδmn is the Kronecker delta.
It is convenient to introduce an inner product notation. For anyu, v ∈ L2(−h,0), the space

of complex-valued functions that are square-integrable over the depth, their inner product is
defined by

〈u, v〉 = 1

h

∫ 0

−h
uv̄ dy, (12)

where the over bar denotes complex conjugate. In this notation, the orthogonality condition
(11) is

〈χm, χn〉 = δmn. (13)

By the expansion theorem for self-adjoint problems [5, p. 199], for anyf ∈ L2(−h,0)

f =
∞∑
m=0

〈f, χm〉χm. (14)

As noted above, the Sollitt-and-Cross model [1] for time-harmonic fluid motion in a porous
structure leads again to the consideration of the boundary-value problem (4–6), but withK

now a complex number. It is numerically difficult to locate the roots of the dispersion relation
in the complex plane. As noted above, for the case of realK the roots lie on either the real or
imaginary axis in the complexk plane and are therefore easily located by standard numerical
methods. For complexK the roots do not lie on the axes and standard iteration schemes may
not converge to the required root due to the lack of a good initial guess. Dalrympleet al. [3]
used a numerical scheme in which the roots are tracked individually as the imaginary part
of K is incremented from zero. In general, it is not possible to make direct calculations for
a specificK using this method. In contrast to this, the results given in Sections 2 and 3 of
the present paper allow roots of the dispersion relation to be found explicitly for arbitraryK.
Since the initial reviews of this paper it has come to the author’s attention that some of the
material presented here in Sections 2 and 3 overlaps with work carried out by Hazard and
Lenoir [6, Appendix B].
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322 P. McIver

A feature of the problem highlighted by Dalrympleet al. [3] is that for isolated values of
the complex parameterK there are double roots of the dispersion relation (8). These double
roots occur at the zeros off ′(kh) and therefore are the roots of

sin 2kh+ 2kh = 0. (15)

Other thankh = 0, all roots of (15) are complex. Again, it is possible to obtain explicit
expressions for the complex roots and this is done here in Section 4.

Once a root of (15) has been located the corresponding value ofK follows from (8). For
such a value ofK, the eigenfunctions (9) no longer form a complete set. Dalrympleet al.
[3] obtain the missing eigenfunctions by an indirect argument based on the Green’s function
for the particular water-wave problem under consideration. Here, the problem is re-examined
from the point of view of the general theory of non-self-adjoint ordinary differential operators
and the formal expansion theorem is given in Section 5. Finally, in Section 6, the expan-
sion theorem is illustrated by obtaining solutions to Laplace’s equation in a two-dimensional
problem.

2. Analysis of the dispersion relation

In this section the dispersion relation (8) is studied for complexK and a number of results are
obtained concerning the location of roots in the complex plane. It is convenient to write

Kh = 0 ≡ α + iβ, (16)

whereα andβ are both real, andkh = w so that the dispersion relation is

f (w) ≡ 0 +w tanw = 0 (17)

andw = u + iv is a complex variable. A simple observation is that ifw = w0 is a root then
w = −w0 is also a root. Within the context of the water-wave problem under discussionα > 0
and this restriction will be adopted throughout this paper. It will also be assumed thatβ > 0,
roots of the dispersion relation forβ < 0 follow simply by taking the complex conjugate of
the roots obtained forβ > 0.

To give some appreciation of the numerical distribution of the roots, the zero contours
of the real and imaginary parts off (w) are plotted in Figure 1. The filled dots are placed at
w = ±(2n+1)π/2, n an integer, which are the zeros of cosw at whichf (w) is undefined (we
could avoid this problem by plotting contours off (w) cosw, but then the plots contain much
more detail and are less clear). Roots of the dispersion relation correspond to the intersections
of the two sets of contours but excluding those atw = ±(2n+ 1)π/2. In the figure,α is fixed
whileβ is varied. There is a double root of the dispersion relation atw ≈ ±(2·1062−1·1254i)
for α ≈ 1·6506, β ≈ 2·05995; Figure 1 gives plots for thisα and asβ is varied it can be seen
how the double root corresponds to a ‘pinching off’ of the zero contour for the imaginary part
of f (w).

Useful information about the location of the roots can be obtained from the argument prin-
ciple of complex variable theory [7, Sect. 12]. For a functiong of the complex variablew that
is analytic within a closed contourC, the argument principle states that the increment in the
argument of the complex numberg(w) asC is traversed in the positive (that is anticlockwise)
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The dispersion relation and eigenfunction expansions for water waves323

Figure 1. Zero contours of the real (– – – –) and imaginary(———) parts ofα + iβ + (u + iv) tan(u + iv) for
α = 1.6506.

direction, here denoted by [argg]C, is equal to 2π times the number of zeros ofg within C.
The argument ofg(w) must be regarded as varying continuously asC is traversed and so is
not restricted to lie within an interval of length 2π .

To apply the argument principle, the dispersion relation (17) is first rewritten in the form

g(w) ≡ 0 cosw +w sinw = 0, (18)

(note thatg and f have the same zeros). Guided by the periodicity of the trigonometric
functions and the numerical results shown in Figure 1, we chooseC to be the rectangle
centered on(u, v) = (nπ,0) and passing through the four points(u, v) = (Rn,±S) and
(u, v) = (Rn−1,±S), whereRn = (2n+ 1)π/2, so that

C = C1 ∪ C2 ∪ C3 ∪ C4, (19)

where

C1 = {u = Rn, v ∈ (−S, S]}, C2 = {v = S, u ∈ [Rn−1, Rn)},
C3 = {u = Rn−1, v ∈ [−S, S)}, C4 = {v = −S, u ∈ (Rn−1, Rn]},

(20)

and the limitS →∞ will be taken eventually.
OnC1,

g(w) = g1(v) ≡ (−1)nh1(v), (21)

where

h1(v) = {β sinhv + Rn coshv + i(−α sinhv + v coshv)}. (22)
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324 P. McIver

It is simpler to consider the functionh1(v) which has the same argument asg1(v). The aim
is to calculate the change in the argument ofh1 asC1 is traversed, that is asv increases from
negative to positive infinity. First of all note that

argh1(v)→
{

1
2π(mod 2π) as v→∞,
−1

2π(mod 2π) as v→−∞. (23)

More specifically, asv→∞
h1(v) ∼ 1

2 ev{β + Rn + i(−α + v)}, (24)

so thath1(v) lies asymptotically in the first quadrant of the complexh1 plane asC1 is tra-
versed. The argument ofh1(v) must vary continuously and the increase in this argument
will depend on if, and where, the imaginaryh1 axis is crossed. From (22), Reh1(v) = 0
at v = − tanh−1Rn/β. Clearly, there are no real solutions, and hence no crossings of the
imaginary axis, forβ < |Rn| and then[argh1]C1 = [argg1]C1 = π . If β > |Rn|, so that the
contour in theh1 plane does cross the Imh1 axis, then from (22) the only crossing occurs at

Imh1(v) =
(
αRn

β
− tanh−1 Rn

β

)
coshv. (25)

If tanh(αRn/β) < Rn/β the crossing occurs in the lower half-plane and again[argh1]C1 =[argg1]C1 = π . If tanh(αRn/β) > Rn/β the crossing occurs in the upper half-plane and then
[argh1]C1 = [argg1]C1 = −π .

Similar results apply asC3 is traversed. In particular, for tanh(αRn−1/β) < Rn−1/β the
change in argument[argg]C3 = −π and for tanh(αRn−1/β) > Rn−1/β the change in ar-
gument is[argg]C3 = π . The signs are reversed becauseC3 is traversed in the direction of
decreasingv whileC1 is traversed in the direction of increasingv.

OnC2

g(w) ∼ −1
2S eS−ix, as S →∞ (26)

and it is immediate that[argg]C2 = π in the limit becausex decreases byπ asC2 is traversed.
Similarly, asC4 is traversed[argg]C4 = π .

The calculation of the net change in argument overC and application of the argument
principle gives the following results.

THEOREM 2.1. Letg be the function defined by(18)and letIn be the condition

tanh
αRn

β
<
Rn

β
(27)

andJn be the condition

tanh
αRn

β
>
Rn

β
, (28)

whereRn = (2n+ 1)π/2.
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(1) If either In−1 andIn or Jn−1 andJn are both true then there is exactly one zero ofg(w)

for Rn−1 < Rew < Rn.
(2) If In−1 andJn are both true, then there are no zeros ofg(w) for Rn−1 < Rew < Rn.
(3) If Jn−1 andIn are both true, then there are exactly two zeros ofg(w) for Rn−1 < Rew <

Rn.

A corollary of this result is that, for alln > N > 1 for which |RN−1| > β, each strip
Rn−1 < Rew < Rn contains exactly one root. Note that if

tanh
αRn

β
= Rn

β
(29)

there is a root of (17) with Rew = Rn.
NextC is modified to be the rectangle passing through the four points(u, v) = (Rn,±S), n >

0, and(u, v) = (0,±S) so that

C = C1 ∪ C2 ∪ C3 ∪ C4, (30)

where

C1 = {u = Rn, v ∈ (−S, S]}, C2 = {v = S, u ∈ [0, Rn)},
C3 = {u = 0, v ∈ [−S, S)}, C4 = {v = −S, u ∈ (0, Rn]},

(31)

and again the limitS →∞ will be taken. The lineC1 is identical to the previous case. OnC2

the asymptotic form (26) applies and[argg]C2 = Rn; the same result is obtained forC4. On
C3

g(w) = (α + iβ) coshv − v sinhv (32)

and so argg→ π(mod 2π) as|v| → ∞. Further, Img 6= 0 for anyv so thatC3 does not wind
around the origin in theg plane and hence[argg]C3 = 0. The calculation of the net change in
argument overC and application of the argument principle now gives the following results.

THEOREM 2.2. Let g be the function defined by(18) and letIn and Jn be the conditions
defined in Theorem2.1

(1) If In is true, then there are exactlyn+ 1 zeros ofg(w) for 0< Rew < Rn.
(2) If Jn is true, then there are exactlyn zeros ofg(w) for 0< Rew < Rn.

Finally in this section the asymptotic behaviour of the roots is noted. Settingw = Nπ+W
in (18), whereN is an integer, gives

g(w) = (−1)N {0 cosW − (Nπ +W) sinW }, (33)

so that

lim
N→∞

g(w)

Nπ
= (−1)N+1 sinW (34)

and asymptotically the roots occur atW = 0. Combined with the results of the Theorems 2.1
and 2.2, this shows that thenth root of the dispersion relation with positive real part is asymp-
totically w = (n − 1)π asn → ∞, as is apparent in Figure 1. Thus, the asymptotics of the
roots of the dispersion relation are the same for real and complex frequency parameterK.
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3. Explicit roots of the dispersion relation

The results obtained in the previous section will not be used to help in the explicit determina-
tion of the roots of the dispersion relation (17). The method employs a device first suggested
by Burniston and Siewert [8, 9] whereby the zeros of a sectionally analytic function (that is,
one with a line of discontinuity) are found by reference to a suitable Riemann–Hilbert problem
[7, Sect. 14]. The method was generalised by Anastasselou and Ioakimidis [10] to apply to
analytic functions without a discontinuity and both methods were unified by Ioakimidis [11].
Burniston and Siewert [8] obtain explicit expressions for the roots of (17) specifically for
the case of real0. Their method could be modified to deal with complex0 but the more
straightforward approach of Ioakimidis [11] is adopted here.

First of all the method is outlined briefly in the context of the current problem. Suppose
that a functionF(z) of a complex variablez is discontinuous for Rez ∈ (−1,1) ≡ L, is
analytic elsewhere in thez plane and hasm zeros in the cut complex plane. The basic aim of
the method is to determine a polynomial

Pm(z) =
m∑
j=0

bj z
j , (35)

whose zeros correspond to those ofF(z), both in location and multiplicity. In the notation used
by Ioakimidis [11], which in turn follows Gakhov [7], the sectionally meromorphic function

M(z) = 1/F(z) (36)

and the sectionally analytic function

8(z) = Pm(z)M(z) (37)

are introduced; from their definitions,M(z) and8(z) are discontinuous acrossL. The key step
in the method is to observe that, from its definition,8(z) is a solution to the Riemann–Hilbert
problem

8+(t)−G(t)8−(t) = Pm(t)[M+(t)−G(t)M−(t)], −1< t < 1, (38)

where the superscripts± denote the boundary values of the function asz→ t±, that is as the
cut is approached from above(+) and below(−), andG(t) is a function that may be chosen
for convenience.

The solution to (38) [7, Sect. 14.5] is

8(z) = X(z)[9(z)+Qp(z)], (39)

whereX(z) is a particular solution to the homogeneous problem

X+(t) = G(t)X−(t), (40)

9(z) is the sectionally analytic function

9(z) = 1

2πi

∫ 1

−1

Pm(t)[M+(t)−G(t)M−(t)]
(t − z)X+(t) dt (41)

181048.tex; 5/09/1996; 13:00; p.8



The dispersion relation and eigenfunction expansions for water waves327

andQp(z) is an arbitrary polynomial of degreep. Two particular choices forG(t) and a
correspondingX(z)will be used here. NamelyG(t) = 1, for whichX(z) = 1, andG(t) = −1
for which

X(z) = (z2− 1)−1/2, (42)

and hence

X+(t) = 1/[i(1− t2)1/2]. (43)

The solution to a Riemann–Hilbert problem is not uniquely determined until the behaviour at
infinity of the unknown function is specified precisely; in the present context we implement
such a condition by choosing the coefficientbm of zm in Pm(z) to be unity.

An expansion about the point at infinity yields

M(z)

X(z)
=

l∑
j=−∞

Ajz
j, (44)

and it follows from (37) and (39) thatp = m+ l. If 9(z) is also expanded about the point at
infinity, then the equality of the expressions for8(z) in (37) and (39) gives

m∑
j=0

bjz
j

l∑
j=−∞

Ajz
j = −

∞∑
k=0

z−k−1
m∑
j=0

bj Ik+j

+Qm+l (z), (45)

where

Ij = 1

2πi

∫ 1

−1

M+(t)−G(t)M−(t)
X+(t)

tj dt. (46)

Finally, if the coefficients ofz−k−1, k = 0, . . . ,m− 1, are equated in (45) it is found that

m∑
j=0

[A−k−j−1 + Ik+j ]bj = 0, k = 0, . . . ,m− 1, (47)

which, because the choicebm = 1 has been made, is a set ofm linear equations for them
coefficients ofPm(z). This theory is now used to find the roots of the dispersion relation.

After the change of variable

w = −i0z, (48)

the dispersion relation (17) may be rewritten as

tan(−i0z− nπ) = 1

iz
, n = 0,±1,±2, . . . (49)

and this may then be rearranged to give

F(z) ≡ z+ 1

20

(
log

z− 1

z+ 1
− 2nπi

)
= 0, (50)
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where the principle branch of the logarithm is to be taken and the branch cut is chosen to be
L, that is the interval(−1,1) on the real axis. Clearly,F(z) is discontinuous acrossL and
analytic elsewhere in the complex plane and hence its zeros may be obtained by the method
described above. In the cut plane

−(2n+ 1)π < Im

(
log

z− 1

z+ 1
− 2nπi

)
< −(2n− 1)π (51)

and therefore from (48)

(2n− 1)1
2π < Rew = u < (2n+ 1)1

2π. (52)

Thus, choosing different values ofn in (50) isolates precisely those strips of the complexw

plane covered by the results of Theorem 2.1 and so the number of rootsm in the cut plane is
known. In particular,m is no greater than two so, at worst, a quadratic equation is solved to
determine the zeros ofPm(z).

For this case, the choiceG(t) = −1 with the correspondingX+(t) is advantageous in the
computation of the integralsIj as rapid variations in the integrand neart = ±1 are reduced.
Further

M±(t) = 1/F±(t) =
[
t + 1

20

(
log

1− t
1+ t − (2n∓ 1)πi

)]−1

(53)

and, in particular,

A−1 = inπ

0
, A−2 = 1

202
[20 − 02− 2n2π2], A−3 = − inπ

203
[2n2π2+ 02− 40],

(54–56)

A−4 = 1

2404
[24n4π4+ 12n2π20(0 − 6)+ 02(24− 40 − 302)], (57)

(these are the only coefficients needed here).
Accurate computation of the integrals is straightforward expect for large|0|when there can

be rapid variations in the integrand neart = 0. However, these potential minor inaccuracies
are of little consequence because once a good approximation to a root has been obtained it
can be refined quite easily by Newton iteration.

4. Double roots of the dispersion relation

Double roots of the dispersion relation occur atKh = −kh tankh wheneverkh is a root of
(15). It is convenient to write 2kh = W so that the location of double roots of (8) is equivalent
to looking for the roots of

γ (W) ≡ sinW +W = 0. (58)

By examining the real and imaginary parts ofγ (W), we observe that it is easy to see that the
origin is the only zero ofγ (W) that lies on the real or imaginary axes in the complexW plane.

181048.tex; 5/09/1996; 13:00; p.10



The dispersion relation and eigenfunction expansions for water waves329

A trivial consequence of the form ofγ (W) is that ifW = W0 is a zero then−W0 and±W 0 are
also zeros. Thus, in numerical calculations, it is sufficient to confine attention to one quadrant
of the complexW = U + iV plane.

As in Section 2, the argument principle may be applied to obtain further information about
the location of the zeros. The details are straightforward so only the results are recorded here.
Let C be the rectangle passing through the four points(U, V ) = ((2n − 1/2)π,±S) and
(U, V ) = ((2n − 1)π,±S) for any positive integern, wher the limitS → ∞ is to be taken.
Application of the argument principle leads to the following.

THEOREM 4.1. Let γ be the function defined by(58). There are exactly two zeros ofγ (W)
for (2n − 1)π < ReW < (2n − 1/2)π , wheren is any positive integer. These zeros form a
complex conjugate pair.

A counting result similar to Theorem 2.2 may also be obtained and the result is as follows.

THEOREM 4.2. Let γ be the function defined by(58). There are exactly2n zeros ofγ (W)
for 0 < ReW < (2n − 1/2)π , wheren is any positive integer. These zeros form complex
conjugate pairs.

This last result shows that Theorem 4.1 locates all of the zeros ofγ (W) in ReW > 0; the
zeros in ReW < 0 follow by reflection in ReW = 0.

The theory outlined in Section 3 will now be used to obtain the zeros ofγ explicitly.
(Burniston and Siewert [9] give explicit expressions which include the roots of (58) as a special
case but again the method of Ioakimidis [11] seems to be more straightforward.) Firstly, (58)
may be rewritten as

2nπ −W = sin−1W = π + i log[(1−W2)1/2+ iW ] (59)

for an integern, where the branch of the inverse sine has been chosen to give

1
2π < Re{sin−1W } < 3π

2
. (60)

With this choice, it follows from (59) that

(2n− 3
2)π < ReW < (2n− 1

2)π, (61)

so that each value ofn isolates a strip of theW plane for which by Theorems 4.1 and 4.2 there
are exactly two complex conjugate roots. In order to apply the results of Section 3, the branch
cut is transferred toL = (−1,1) by the change of variableW = 1/z so that it is required to
locate the zeros of

F(z) = 1− z
{
(2n− 1)π − i log

[(
1− 1

z2

)1/2

+ i
z

]}
(52)

so that, after careful calculation, asz→ t±

F±(t) = 1+
{
−(2n− 1)πt − π

2
|t| ± it log

[(
1

t2
− 1

)1/2

+ 1

|t|

]}
, (63)
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Table 1. Values of0 for which there are double
roots of the dispersion relation (18) together with
the corresponding rootsW of (58).

W 0

4·21239− 2·25073i 1·65061+ 2·05998i

10·7125 − 3·10315i 2·05785+ 5·33471i

17·0734 − 3·55109i 2·27847+ 8·52264i

23·3984 − 3·85881i 2·43112+ 11·6888i

29·7081 − 4·09370i 2·54799+ 14·8458i

[see 9, Eqn. 2.1 withk even]. Slightly more accurate results are obtained forG(t) = 1 (rather
thanG(t) = −1) and the required expansion coefficients are

A−1 = − 1

(2n− 1)π
, A−2 = A−3 = 0, A−4 = 1

6(2n− 1)2π2
. (64)

The five roots of (58) within the fourth quadrant and with smallest modulus are given in
Table 1, along with the corresponding values of0.

5. The expansion theorem

Attention is now turned to the structure of the eigenfunction expansions for the problem where
the frequency parameter in (8) is complex. The standard expansion theorems found in most
text books do not apply as the vertical eigenfunction problem is no longer self-adjoint. Other
problems where the standard theory does not apply arise, for example, in underwater acoustics
[12] and heat conduction [13].

An operatorT is self-adjoint if, for all suitable functionsu andv

〈T u, v〉 = 〈u, T v〉, (65)

(the inner product is defined in equation 12). Integration by parts show that the operator
defined by (4–6) is self-adjoint if and only ifK is real. Hence the porous structure problem,
whereK is complex, is not self-adjoint and the expansion theorem (14) does not apply.

The expansion theorem for non-self-adjoint ordinary differential operators is discussed by
Coddington and Levinson [5, Chap. 12] and the theory described there is now applied to the
present problem. The eigenvalues of the problem (4–6) are given byλ = k2, wherek is a,
now complex, root of the dispersion relation (8). LetCn be a closed contour in the complexλ
plane which encircles in an anticlockwise direction the eigenvalues{λ1, λ2, . . . , λn}, arranged
in order of increasing modulus and with repetitions included. The general expansion theorem
[5, p. 299] says that, for suitable functionsf

f (y) = − lim
n→∞

∫ 0

−h
Pn(y, η)f (η)dη, (66)
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where

Pn(y, η) = 1

2πi

∫
Cn

G(y, η;λ)dλ. (67)

G now denotes the Green’s function for the particular problem under consideration, and
provided suitable convergence properties can be established for the particular problem un-
der consideration. Fortunately, the problem here falls into a class investigated in detail by
Coddington and Levinson [5, Thm. 2.1, p. 303] and the expansion theorem (66) is indeed
applicable.

The Green’s functionG(y, η;λ) for the problem (4–6) is required to satisfy the additional
condition

lim
δ→0+

{
∂G

∂y
(η + δ, η;λ)− ∂G

∂y
(η − δ, η;λ)

}
= −1 (68)

and it is readily found that

G(y, η;λ) = −(k cosky> +K sinky>) cosk(y< + h)
k(K coskh+ k sinkh)

, k = λ1/2, (69)

where

y< = min(y, η) and y> = max(y, η). (70)

This Green’s function has poles at values ofλ corresponding to the roots of the dispersion
relation (8) so that, by the residue theorem

Pn(y, η) =
n∑

m=1

Rm(y, η), (71)

whereRm is the residue ofG atλ = λm. If the eigenvalues are known then the residues at the
poles of the Green’s function can be calculated and the form of the general expansion found.
As has been observed previously in this paper, at isolated values ofK there is a double root of
the disperison relation and hence a double pole of the Green’s function. For almost all values
of K the Green’s function has only simple poles.

The residue of the Green’s function for a pole of orderpm at λ = λm is readily evaluated
by standard means and may be written

Rm(y, η) = −
pm∑
q=1

ψm,pm−q+1(η)χm,q(y). (72)

The set{χm,q} are the so-called ‘generalised eigenfunctions’ of the problem (4–6), while the
set{ψm,q} are the generalised eigenfunctions of the adjoint problem. For the case of a simple
pole,pm = 1,

χm,1 = coskm(y + h)
Nm

and ψm,1 = χm,1 (73)
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and they satisfy

〈χm,1, ψm,1〉 = 1. (74)

For the case of a double polepm = 2, the generalised eigenfunctions are

χm,1 = −2 coskm(y + h)
cos2 kmh

and ψm,1 = χm,1, (75)

χm,2 = 1
6(4 sin2 kh− 3) coskm(y + h)+ km(y + h) sinkm(y + h) and

ψm,2 = χm,2, (76)

with

〈χm,1, ψm,1〉 = 〈χm,2, ψm,2〉 = 0 and 〈χm,1, ψm,2〉 = 〈χm,2, ψm,1〉 = 1. (77)

In the double-pole case, although the residue is well defined, there is a degree of arbitrariness
in how the residue is split to form the generalised eigenfunctions{χm,q, ψm,q; q = 1,2};
the functions given here are chosen specifically to satisfy (77). Generalised eigenfunctions
corresponding to different eigenvalues are biorthogonal so that

〈χm,q, ψn,r〉 = 0, m 6= n. (78)

Superficially this result and (74) are identical to the orthogonality condition (13). However,
because of the definition of the inner product (12), whenK is complex it is not technically
correct to describe the functions{χm,1,m = 1,2, . . .} as forming an orthonormal set even
when there are no double poles. Rather, these functions are biorthogonal to the eigenfunctions
{ψm,1,m = 1,2, . . .} of the adjoint problem.

With the above definitions, the general expansion theorem is

f =
∞∑
m=1

pm∑
q=1

〈f,ψm,pm−q+1〉χm,q . (79)

As noted at the end of Section 2, the asymptotic behaviour of the roots of the dispersion
relation are the same for real and complexK. Thus, expansions of the form (79) in a porous-
structure problem will display the same convergence properties as similar expansions in stan-
dard water-wave problems. For realK, all poles of the Green’s function are simple and
ψm,1 = χm,1 ≡ χm−1, as defined in equation (9), so that (79) reduces to (14) after a suitable
relabelling of the eigenvalues.

6. Solutions of Laplace’s equation

The expansion theorem (79) may be used to find solutions of water wave problems. For
example, suppose that a two- dimensional solutionφ(x, y) of Laplace’s equation is required
satisfying the boundary conditions

∂φ

∂y
= 0 on y = −h and

∂φ

∂y
= Kφ on y = 0. (80)
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From (79), the solution is sought in the form

φ(x, y) =
∞∑
m=1

pm∑
q=1

Cm,q(x)χm,q(y), (81)

which satisfies the Laplace equation provided

∞∑
m=1

pm∑
q=1

{C′′m,q(x)χm,q (y)+ Cm,q(x)χ ′′m,q(y)} = 0. (82)

Now by differentiation

χ ′′m,1 = −k2
mχm,1 and χ ′′m,2 = −k2

mχm,2− k2 cos2 khχm,1, (83)

so that (78) may be used to isolate terms corresponding to distinct eigenvalues. For a simple
pole this results in

C′′m,1− k2
mCm,1 = 0, (84)

which has the general solution

Cm,1(x) = am ekmx + bm e−kmx, (85)

where am and bm are arbitrary constants. For a double pole, application of (78) and the
biorthogonality properties (77) yields

C′′m,2− k2
mCm,2 = 0 and C′′m,1− k2

mCm,1 = k2 cos2 khCm,2, (86)

which have general solutions

Cm,2(x) = cm ekmx + dm e−kmx (87)

and

Cm,1(x) = am ekmx + bm e−kmx + 1
2kx cos2 kh(cm ekmx − dm e−kmx), (88)

wherecm anddm are further arbitrary constants. This gives the ‘missing’ eigenfunctions and
a simple rearrangement gives agreement with the calculation of Dalrympleet al. [3].

7. Conclusion

The construction of eigenfunction exapnsions within porous structures has been examined in
detail and a number of results have been used to clarify the construction of such expansions.
The method of Ioakimidis [11] has been applied to the dispersion relation and this allows
straightforward computation of its roots throughout the complex plane. The theory of non-
self-adjoint differential operators [5] has been used to show how the formal construction of
eigenfunction expansions can be carried out.
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A further development of the model discussed here to waves within a layered porous
structure has been described by Yu and Chwang [14]. This result in a much more complicated
dispersion relation and it is not clear that the methods used in this paper can be easily applied
to locate the roots. Neither is it clear, without further work, whether or not the convergence
results of Coddington and Levinson [5] allow the formal expansion theorem to be applied to
this case.
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